
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Adversarial Attack on State-of-the-art Question-Answering Systems

Zehui li zl432@cantab.ac.uk

Abstract

The use of pre-trained language models enable
state-of-the-art (SOTA) question-answering
systems to reach the human performance in
terms of numerical metrics. Adversarial at-
tacks would be a proper way to find the limit
of these models. In this paper, we focus on the
second version of the Stanford Question An-
swering Dataset (SQuAD 2.0). We select three
SOTA QA systems trained on this dataset, and
then propose multiple model-independent ad-
versaries based on the work of (Jia and Liang,
2017) to attack three systems. To compare
the performance of different adversarial gen-
erators and systems, we use multiple metrics,
including the reduction of F1 score, potency,
and resilience (Thorne et al., 2019). We found
that adding distracting information remains an
effective attacking method to reduce the accu-
racy of pre-trained models in SQuAD 2.0.

1 Introduction

With pre-trained contextual embeddings, state-of-
the-art Question-Answering (QA) Systems have
achieved relatively high accuracy on various ma-
chine comprehension benchmark datasets. While
some models have higher performance than hu-
man beings in terms of numerical metrics. It re-
mains a question whether these models can truly
understand human languages. The adversarial
evaluation would be an effective method to test the
robustness of existing QA systems.

In this paper, we first provide an overview of
existing methods for adversarial evaluation on the
NLP tasks, and then we focus on generating ad-
versarial instances for a reading comprehension
task called Stanford Question Answering Dataset
(SQuAD) 2.0 (Rajpurkar et al., 2018). In the task,
each system is given a context and a question, and
the system is expected to highlight the answer in
the context accordingly. Despite the seemingly

Figure 1: Duplicate Insertion Examples. An auto-
generated sentence is inserted immediately after the an-
swer. The BiDAF model without character-level em-
beddings give the wrong prediction - the monastery of
aliens

challenging formation of the task, a state-of-the-
art system using ALBERT (Lan et al., 2019), has
achieved an F1 score of 91%, which is 1% higher
than the human performance.

To test to what extent related systems can truly
understand human languages, we perform the ad-
versarial evaluation on three systems: Bidirec-
tional Attention Flow (Seo et al., 2016), BERT
(Devlin et al., 2018), and XLNet (Yang et al.,
2019). While the first model uses LSTM(Gers
et al., 1999) as the encoding layer, later two sys-
tems are contextual embedding models with trans-
former as the encoder (Vaswani et al., 2017),
which fall into the same category as ALBERT
model.

The generation of valid adversarial examples is
challenging in NLP tasks because of the constraint
of producing both grammatical and semantics-
preserving sentences. In this paper, we augment
the work from (Jia and Liang, 2017), in which they
generate adversarial examples for SQuAD version
1.0 by appending the question-similar sentence to
the context paragraph. We first make a modifica-
tion to this method such that this method can be
applicable to SQuAD 2.0, and beyond that, we de-

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

velop two more black-box adversarial attacks, Du-
plicated Insertion and Words Fliping, to perturb
context paragraphs while preserving the semantic
meaning of the original text.

Figure-1 is an example generated from the Duli-
cated Insertion Method: the sentences in red
are generated automatically by rules, and the sen-
tences in black are original text. By inserting a
sentence that has a similar form as the question,
the model gives the wrong prediction. When ap-
plying Duplicated Insertion and Words Flipping
methods to attack the state-of-the-art systems, the
F1 scores of three systems all reduce by a large
margin, proving that these systems are still vulner-
able to adversarial examples. The major contribu-
tions of this paper are summarized below, and the
output of models and adversarial examples can be
found on GitHub1.

• Extend the previous adversarial evaluation
method (Jia and Liang, 2017) to SQuAD 2.0.

• Prove that adding distracting information to
the text is an effective way to attack Deep
Neural Networks (both pre-trained contextual
embeddings and models without pretraining)

• Propose new methods for attacking reading
comprehension models

2 Background

In this section, we provide an overview of the ex-
isting methods for adversarial evaluation in the
NLP field, following by a detailed description of
the reading comprehension task - SQuAD 2.0.

2.1 Overview of Adversarial Evaluation in
NLP

In 2013, (Szegedy et al., 2013) identifies the vul-
nerability of deep neural networks to adversarial
examples in the computer vision area. After that,
many researchers start to investigate adversarial
evaluation (or adversarial attack) in image, audio,
and NLP fields.

In general, adversarial examples are generated
by perturbing the input of a given instance in an
imperceptible manner. While the ground truth la-
bel remains the same, the machine learning model
is misled by this perturbation, resulting in misclas-
sification of the instance. Adversarial examples

1https://github.com/Zehui127/
L101AdverAttack.git

can be generated in the Black-box or White-box
manner. White-box refers to the situation where
the adversarial generator can access all the details
of the model, including the parameters and the
model architecture. Black-box attacking, on the
other hand, only has limited access to the model:
in the best case, it can feed input to the model
and examine the corresponding output. Moreover,
some adversarial evaluation methods are com-
pletely model-independent. In the scope of this
paper, we will focus on such model-independent
adversarial evaluation, in which no query is re-
quired when generating examples.

When it comes to the NLP field, adversarial
evaluation can be further classified by the level of
perturbation and the categories of the task. Due to
the discrete output space of textual data, only sev-
eral levels of perturbation can be performed. At
the character level, we could delete, insert, or re-
place characters of the original example. An ex-
ample of this is the work from (Ebrahimi et al.,
2017), in which they perform a character-level per-
turbation to attack the text classifier. Similarly,
at the word level, we can perform deletion, inser-
tion, and replacement. One recent paper proposes
a method called TEXTFOOLER (Jin et al., 2019)
to attack text classification, and textual entailment
systems use word-level perturbation. At the sen-
tence level, adversarial examples can be formed by
adding distractor information (inserting new sen-
tences to the original text), but we can also pro-
duce semantically equivalent sentences through
paraphrasing (Ribeiro et al., 2018).

No matter what level of structure the adversarial
evaluation is targeting, resulting examples should
follow two principals: the first one is that gen-
erated examples should be grammatical, and the
second one is that it should be semantically simi-
lar to the original text. These two principals also
guide the design of new adversarial evaluations in
Section-4.

2.2 SQuAD 2.0 Task

The SQuAD is a reading comprehension dataset
based on Wikipedia articles with crowd-sourced
questions and answers. The first version of
SQuAD is published in 2016 as a shared task (Ra-
jpurkar et al., 2016), followed by a second re-
lease of the dataset in 2017. Every instance of
the dataset is a triple consisting of context, ques-
tion, and answer, and in the shared task, the sys-

https://github.com/Zehui127/L101AdverAttack.git
https://github.com/Zehui127/L101AdverAttack.git

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

tem is required to produce the right answer given
the context and question. In SQuAD 1.0, answers
has to appear in the context; however, in SQuAD
2.0, around half of the questions cannot be an-
swered by the given context and the system have to
output empty predictions for unanswerable ques-
tions. This modification makes the second version
a more challenging task because it does not allow
the system to guess the answer randomly.

Two numerical metrics are used in the task to
evaluate the system: Exact match and F1 score.
F1 score is the harmonic average of precision and
recall between the prediction and ground truth.
Exact match measures the percentage of predic-
tions that match the ground truth perfectly.

In the following adversarial evaluation experi-
ment, the reduction of two metrics will be one of
the essential measurement for the quality of gener-
ated adversarial examples. Furthermore, since the
test set is not available to the public, we use the
development data set (dev set) to generate adver-
sarial examples and evaluate the performance of
models.

3 Candidate Models

Until December 2019, the top 8 systems on the
ranking list of SQuAD 2.0 have achieved an Exact
Match of more than 86.8% and an F1 of more than
89.8 %. Moreover, all of these systems are the
mutation of a pre-training language model, BERT
(Devlin et al., 2018). For example, RoBERTa (Liu
et al., 2019) has the same architecture as BERT,
but it is trained on a larger size of the dataset with
careful hyperparameter tuning. ALBERT (Lan
et al., 2019) uses various techniques, including pa-
rameters sharing across layers, to reduce the num-
ber of parameters of BERT to solve the model
degradation problem.

For adversarial evaluation, we select two mod-
els from the BERT Family: the original BERT
model and XLNet (Yang et al., 2019). An-
other model called Bidirectional Attention Flow
(BiDAF)(Seo et al., 2016) is also selected as a ref-
erence model to indicate how non-pretrained mod-
els react to the adversarial attack. In the remaining
part of this section, we will talk about the details
of three models which we are targeting in the ad-
versarial attack.

3.1 Bidirectional Attention Flow Model

Original BiDAF model (Seo et al., 2016) uses
word embeddings and character-level embeddings
as the input, and then these embeddings are refined
by passing through an embedding layer called the
Highway Network (Srivastava et al., 2015). After-
ward, the refined embeddings go through the bidi-
rectional LSTM (Gers et al., 1999) encoder layer,
attention layer and another bidirectional LSTM
layer to produce probability of being the start-
ing position and ending position of the answer for
each words in the context.

In the experiment, we did not re-implement
this network; instead, we use the implementation
from Chris Chute2, which is a BiDAF without the
character-level embedding. This model is trained
in the Colab Platform with GPU3, obtaining an F1
of 60.31 on dev set.

3.2 BERT and XLNet

BERT (Devlin et al., 2018) is a pre-trained lan-
guage model based on many previous work includ-
ing ELMo (Peters et al., 2018), ULMfit (Howard
and Ruder, 2018), and PTG (Radford et al., 2018).
These pre-trained models are trained on the large
data set in advance, and when they are applied to
a specific task, such as text classification and read-
ing comprehension, only fine-tuning is needed on
a relatively small dataset.

BERT uses a stack of transformers as the en-
coder to train a masked language model, in which
15 % of the tokens are masked, and the model is
trained to predict these tokens. By adding another
task, next sentence prediction, to the training pro-
cess, the BERT model is able to achieve the state
of the art results on eleven NLP tasks. However,
BERT also has some disadvantages. For exam-
ple, masking tokens during the training process
makes it not consistent with the fine-tuning steps,
in which no tokens are masked.

XLNet (Yang et al., 2019) is improved upon
BERT by using the Transformer-XL (Dai et al.,
2019) as the encoder to capture longer dependen-
cies, and it also proposes permutation language
modeling to deal with the inconsistency problem
that BERT has.

2The code is initially developed as for Stanford-CS224n,
and the linked to the model is https://github.com/
chrischute/squad

3The setting of hyperparameters can be found here in the
GitHub link

https://github.com/chrischute/squad
https://github.com/chrischute/squad

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

In the adversarial evaluation, we fine-tune both
BERT base on google cloud with a TPU v2,
obtaining a F1 score of 74.39% and 78.12% on
SQuAD 2.0 dev set respectively. As for XLNet,
we fine-tune XLNet base on google cloud, obtain-
ing an F1 score of 82.63%.

4 Generating Adversarial Examples

Although these pre-trained language models have
achieved high performance on SQuAD 2.0 dataset,
it does not mean that they can truly comprehend
human languages. In this section, we will propose
three model-independent methods to generate ad-
versarial examples for SQuAD 2.0, and in the first
subsection, we will use mathematical language to
formalize the task of adversarial evaluation.

4.1 Formalization of Adversarial Evaluation
The generator of adversrial examples can be de-
fined as a function T : x → x′, which transforms
an instance x into a adversarial example x′.

For SQuAD task, each instance consists of a
question x1, a the context paragraph x2, and an
answer y. All the QA systems can be represented
by a function M : (x1, x2) → ŷ, where M takes
the the question x1 and context x2 as the input and
output an estimate of the answer ŷ.

An effective adversarial generator T will take
the triple (x1, x2, y) as the input and output
(x′1, x

′
2, y). In the scope of this paper, we only

modify the context paragraph. Therefore, the
transformation has the following form.

T : (x1, x2, y)→ (x1, x
′
2, y) (1)

The reason why we do not perturb the question is
that the length of the question is very short com-
pared to the length of context paragraph, and any
slight change in the question may actually change
the semantic meaning of the question, leading to
the change of the answer.

In the following subsections, we will study how
to generate triples (x1, x

′
2, y) such that the se-

mantic similarity between x2 and x′2 is maxi-
mized while the F1 score and Exact Match be-
tween M(x1, x

′
2) and y are minimized.

4.2 Augmented Concatenative Adversaries
Concatenative adversaries are proposed by (Jia
and Liang, 2017), but it can only apply to SQuAD
1.0, and therefore we augment this method such
that it can be applied to SQuAD 2.0.

Original concatenative adversaries creates new
context paragraphs x′2 by appending the distract-
ing sentence d to the end of the original para-
graph x2, where d is generated by the following
procedure: Firstly, x1 is transformed into a pivot
sentence x′1 by replacing nouns/adjectives with
antonyms, and named entity/numbers with nearest
words using word embeddings. At the same time,
a fake answer y′ which has the same type as y is
created. Secondly, x′1 is combined with y′ to gen-
erate the d using a list of hand written rules. One
example rule which converts x1 and y′ to d is like
following:

• how $JJ $Be $NP → $NP $Be fake-answer
$JJ

This method works fine with the SQuAD 1.0 be-
cause, for every question, there is a corresponding
answer y, and we can generate y′ from y. How-
ever, for SQuAD 2.0, half of the instances do not
have answers, in other words, y = ∅, so we cannot
generate y′ from y.

In order to resolve this issue, we propose aug-
mented concatenative adversarial, in which we
create a set of rules R which could generate y′

from x1 when y = ∅. R will use the key word
in x1 to generate fake answers . For example, the
key word like “when” will generate a fake answer,
“2019”. Equation-2 shows how we generate fake
answer y′:

y′ =

{
R(x1) if y = ∅
Roriginal(y) if y 6= ∅

(2)

where Roriginal is the function used by the origi-
nal method, which creates y′ with the same type as
y. With this simple modification, we can now ap-
ply the concatenative adversaries to SQuAD 2.0.

4.3 Duplicated Insertion Adversaries
In the original method, d is only appended to the
end of context paragraph x2, and this choice is
arbitrary according to (Jia and Liang, 2017). To
reinforce this method, we propose duplicated in-
sertion adversaries, in which the distracting sen-
tence d is prepended to the beginning of x2, ap-
pended to the end, and inserted into x2.

For the insertion operation, we cannot insert it
into any position of x2 because it will make the
sentence ungrammatical. Therefore, we iterate
through x2, finding all the sentence boundaries,
and insert d immediately after the sentence, which

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

contains the answer. Figure-1 shows one exam-
ple of duplicated insertion adversaries, in which
the sentence in red is inserted into the paragraph.
Since the distracting sentence does not have over-
lap with the original paragraph, the resulting per-
turbed paragraph is still compatible with the origi-
nal question and answer, and it also remains gram-
matical.

4.4 Words and Punctuation Flipping
Adversaries

The third method will perturb the context para-
graph x2 at the word level: To be more specific, it
will flip the word and the punctuation in x2 while
preserving its semantic meaning.

For word-level perturbation, SQuAD is differ-
ent from text classification task, we have to make
sure the x′2 still contain the answer after the trans-
formation, so we froze the sentence which con-
tains the answer, and apply the word flip operation
on all the other sentences.

Word flip: Suppose x2 = {s1, s2, ..., sn}. For each
sentence si ∈ x2, we randomly flip n
word w1, w2, . . . , wn from si to the near-
est words in the Glove embedding space.
w1, w2, . . . , wn have to satisfy two constraits:
firstly, they cannot be stop words, such as
“a, the, at”, in order to main the grammar
structure of the sentence. Secondly, we ex-
clude the word with Cardinal number part-
of-speech tagging, to make sure the semantic
meaning of the sentence remain the same.

In the above operation, the number of words (n) to
flip for each sentence is a hyper-parameter, which
controls the trade-off between the extend of pertur-
bation and the change of semantic meaning. With
large value of n, the semantic meaning will change
significantly.

In addition, to test the sensitivity of the model
to change of punctuation, we flip comma and full-
stop in the context to one of element in this set
{?! : }̃ randomly.

For the implementation of these methods, Stan-
ford CoreNLP library is used for pos tagging and
constituency parsing.

5 Metrics to evaluate Adversarial attack
methods

To evaluate different adversarial attack methods,
we use multiple metrics. The most straight for-
ward metric to measure the quality of the method

is the reduction of F1 and Exact Match (EM),
which are simply defined in Equation-3 4.

δF1 = F1(M(x1, x2), y)− F1(M(x1, x
′
2), y)

(3)

δEM = EM(M(x1, x2), y)−EM(M(x1, x
′
2), y)

(4)
Where M is the model which gives prediction to
the answer. In our experiment, it could be BiDAF,
BERT, or XLNet.

The above evaluation does not take into account
the quality of adversarial examples. To measure it,
we can use potency and Resilience from (Thorne
et al., 2019). potency is used to compare two
adversarial generators using the same set of sys-
tems, while resilience is used to evaluate the per-
formance of the same system using different types
of adversarial examples. Both criteria take the cor-
rectness of the adversary (Ca) into account, which
is defined as the percentage of correct samples in
the adversarial examples. In our evaluation, an ad-
versarial example (x1, x

′
2, y) is counted as correct

only if x′2 it is grammatical and similar to x2 se-
mantically. In our work, potency and Resilience
are defined in equation-5 and 6

potency = Ca ∗
∑

s∈S (1− F1(ŷs,a, ya))
|S|

(5)

Resilience =

∑
a∈A (Ca ∗ F1(ŷa, ya))∑

a∈ACa
(6)

where S = {BiDAF,BERT,XLNet}, A is a set of
four adversarial evaluation methods. ŷa and ya are
predicted answer and ground truth answer under
adversarial evaluation a.

6 Experiment

6.1 Quantitative Analysis
We first apply four adversarial generators4 on the
dev set of the SQuAD 2.0, resulting in four sets
of mutated dev sets. Each set contains more than
8000 samples, where each sample is a (question,
context, answer) triple. Secondly, we used these
adversarial examples to evaluate BiDAF, BERT,

4For simplicity four adversarial evaluation are called ACA
(Augmented Concatenative Adversaries), DIA (Duplicated
Insertion Adversaries), WFA (Words Flipping Adversaries),
and PFA(Punctuation Flipping Adversaries)

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

BiDAF BERT XLNet
Non-adv 60.31 74.39 82.63
ACA 38.96 57.46 61.80
DIA 40.82 53.14 55.16
PFA 60.14 73.76 82.01
WFA 60.27 73.34 79.16

Table 1: F1 scores for different systems under adver-
sarial evaluation.

BiDAF BERT XLNet
ACA 21.35 16.93 20.83
DIA 19.49 21.25 27.49
PFA 0.17 0.63 0.62
WFA 0.04 1.05 3.47

Table 2: The reduction of F1 scores for different sys-
tems under adversarial evaluation.

and XLNet, which are trained on the SQuAD 2.0
training set. Table-1 shows the F1 score for all the
systems evaluated on different adversarial exam-
ples.

Non-adv row shows the F1 score of three sys-
tems on the original dev set without the adversar-
ial attack. BERT and XLNet perform much better
than BiDAF. The most obvious conclusion is that
the F1 scores of three systems reduce by 20% un-
der augmented concatenation attack (ACA) and
duplicated insertion attack (DIA).

When it comes to the individual system, BERT
and XLNet are most vulnerable to DIA, and
BiDAF is most vulnerable to ACA and DIA.

Table-2 present the same data in the form of the
reduction of F1 score. We can use it to compute
the potency and resilience (Thorne et al., 2019) of

Figure 2: potency of various adversaries. DIA is the
most powerful adversary

Figure 3: Resilience of various systems. XLNet is the
most stable system

the systems and adversaries, given the correctness
rate Ca. The value of Ca is computed by human
evaluation: we sample 20 examples for each types
of adversaries. In particular, the Ca for punctua-
tion flipping adversaries is 100 % because it does
not change the semantic meaning of the context
paragraph at all. The Ca for ACA, DIA,and WFA
are 0.75, 0.70, and 0.85, respectively.

Figure-2 show the potency of difference adver-
saries and Figure-3 shows the resilience of vari-
ous systems. From two figures, two conclusions
could be made, firstly, duplicated insertion adver-
sary (DIA) is the most effective adversarial evalua-
tion measured by potency. Secondly, the XLNet is
the most stable system under the adversarial eval-
uation.

6.2 Qualitative Analysis

In the sub-section, we unpack some outputs of
the models and generated adversarial examples,
which helps us to understand what are the prop-
erties of different adversarial examples and how
ACA and DIA reduce the F1 of three models.

ACA and DIA are very similar adversarial gen-
erators, both of them generate new context para-
graphs x′2by combining original context x2 and
distracting sentence d. Figure-4 shows a list of
d in which BiDAF makes the correct prediction
despite the distraction. We could see that these
distracting sentences have many overlaps with the
question syntactically, but they are very different
in terms of semantic meaning. Figure-5 show two
more examples in which BiDAF makes the wrong
prediction, we will assume that BiDAF tends to
make a mistake when there is a higher percentage
of overlap between the question and the distracting

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

Figure 4: Three distracting sentence examples in
which BiDAF gives the right prediction. We highlight
the overlap tokens between question and generated sen-
tences.

Figure 5: Two distracting sentence examples in which
BiDAF gives the wrong prediction.

sentence. In both cases, these computer-generated
sentences are grammatical most of the time.

We also analyze the examples generated by
word flipping adversary (WFA). In WFA, the to-
kens are flipped to its neighbour in the Glove em-
bedding space with some constraints. It turns out
these examples have a very good quality in terms
of semantic similarity and grammar.

Below is a partial list of flipped words, indicat-
ing that most of the flipping is very sensible oper-
ations.

1. immediate→ direct

2. communicate→ transmit

3. troops→ forces

4. artifacts→ objects

5. notion→ idea

6. implemented→ formulated

7. drop→ fall

...

However, when it comes to the performance on
adversarial evaluation, it seems like this perturba-
tion is too mild to cause prediction errors for three

models. As table-1 shows, WFA can only reduce
the performance of three models by less than 4 %.
It indicates all of the three models have the ability
to understand the paraphrased version of text. It
might be worthwhile to try to attack three models
using other paraphrase adversarial attacking, such
as . We will generally assume three models are
also stable under other paraphrase adversarial at-
tacking.

7 Discussion and further work

From the above result, we could have two conclu-
sions in terms of developing a model-independent
adversarial evaluation for the machine comprehen-
sion task. The first one is that BiDAF, BERT, and
XLNet are still vulnerable to adversarial attack-
ing using distracting sentences, such as ACA and
DIA. Secondly, these three methods are somehow
stable over paraphrase attacking (e.g., WFA). In
particular, all of them are not sensitive to punctua-
tion change at all.

While WFA is not an effective adversarial, it
can produce grammatical sentences while preserv-
ing the semantic meaning. Therefore, it might be
a good way to augment the data set at the training
stages.

In terms of future work, there are many direc-
tions to go. Effective ways to generate adver-
sarial model-independent examples are of great
importance. It can not only identify the vulner-
ability of the models but help us to understand
how deep neural networks are able to process lan-
guages. In this work, we use rule-based (template-
based) methods to generate a distracting sentence,
but another possibility is to use end-to-end models
and all the research work in natural language gen-
eration to generate adversarial examples. (3492
words)

References
Zihang Dai, Zhilin Yang, Yiming Yang, William W

Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xl: Attentive lan-
guage models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and De-
jing Dou. 2017. Hotflip: White-box adversarial

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

examples for text classification. arXiv preprint
arXiv:1712.06751.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
lstm.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907.11932.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing with unsupervised learning. Technical re-
port, Technical report, OpenAI.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging nlp models. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 856–865.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2019.
Evaluating adversarial attacks against multiple
fact verification systems. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2937–2946.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

