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An exploration on the optimization routines of SVI for GPs

Zehui li zl432@cantab.ac.uk

1 Introduction

Gaussian process (GP) models with N instances
require a computational complexity of O(N3) at
the training stage because it involves the inverting
of a covariance matrix. To extend the use of GPs
to large datasets, (Titsias, 2009) proposes a vari-
ational inference method to reduce the computa-
tional complexity to O(NM2) with M inducing
points. A further reduced computational bound of
O(M2min{M,Bachsize}) can be obtained by
the use of stochastic variational inference (SVI)
(Hensman et al., 2013).

In SVI for GPs, there are three sets of variables
to optimize at each iteration: the inducing vari-
ables, the covariance parameters, and the in-
ducing points locations. When it comes to the
implementation of the SVI for GPs, however, it is
not clear what is the best strategy to optimize three
sets of variables. One conclusion from the original
paper (Hensman et al., 2013) is that to fix the co-
variance parameters for a few iterations can stable
the convergence.

In this report, I expand on this topic and conduct
an empirical study on different optimization rou-
tines of SVI for GPs: different orders of optimiz-
ing three sets of variables are compared against
each other. The converging speed and marginal
likelihood are used as the criteria to evaluate dif-
ferent optimization routines. In addition, the per-
formances of various types of stochastic optimiza-
tion algorithms are also compared.

The major contributions of this report are sum-
marized below, and the code for data processing
and model building can be found on Colab Note-
book1.

• Apply different optimization routines and al-
gorithms to solve SVI for GP.

1https://colab.research.google.com/
drive/1mLrL9p9TICFUAN6eZT0rFk21GMFIbsj2

• Design experiments and compare the perfor-
mance of various optimization routines and
algorithms on a toy example.

• Test the performance of selected optimization
routines and algorithms on a real data set.

2 Background

In this section, I will review the concepts of SVI
for GPs, which is then followed by an overview
of different optimization algorithms and the tools
I used in this report.

2.1 Review of SVI for GPs
Assume a dataset D of n training points, D =
(X,Y ) = {(x1, y1), (x2, y2), . . . , (xn, yn)}; each
yi = f(xi) + ε is generated by a function f with
Gaussian noises, where ε is the noise of Gaussian
distribution with precision β. I will assume a GP
prior for f . Then to reduce the computational
complexity, I can introduce m inducing points:
{z1, z2, . . . , zm} with m � n and the inducing
variable u will equal to the following:

u =
[
f(z1) f(z2) . . . f(zm)

]
To apply stochastic variational inference to the
GP model, I will first approximate the distribu-
tion of u using a variational distribution q(u) =
N (u|m,S), and then the lower bound L3 of the
quantity p(Y |X) can be written as equation-1.

log p(Y |X) ≥ L3

=
n∑

i=1

{logN (yi|k>i K−1mmm,β
−1)− 1

2
βk̃i,i −

1

2
(Si)}

−KL(q(u)||p(u)) (1)

whereKmm is the covariance function between all
the inducing points, ki is the ith column of the co-
variance function between all the inducing points

https://colab.research.google.com/drive/1mLrL9p9TICFUAN6eZT0rFk21GMFIbsj2
https://colab.research.google.com/drive/1mLrL9p9TICFUAN6eZT0rFk21GMFIbsj2
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and training points; k̃i,i and i are also expressions
involving the above covariance functions.

This lower bound L3 is used as the objective to
minimize during the stochastic variational infer-
ence process. There are three sets of parameters
to optimize for: the first set, inducing variables,
includes m and S, which define the distribution
of q(u); the second set, inducing points location,
includes {z1, z2, . . . , zm}; the third set of parame-
ters are the hyper-parameters for the covariance
function, and I denote them as θ. If an RBF kernel
is used, for example, θ includes the length scale
and variance of the RBF kernel.

2.2 Optimization Algorithms

Different stochastic gradient descent algorithms
can be used to optimize three sets of parameters.
In this report, I experiment with three distinct al-
gorithms: Rprop, Adadelta, and Adam.

Rprop is the short for resilient back-
propagation (Riedmiller and Braun, 1993). It is
first developed for supervised learning in artificial
neural networks, but it can be applied to all types
of optimization problems. Different from vanilla
sgd, Rprop maintains different learning rates for
every parameter, and these learning rates are deter-
mined by the sign of changes of the partial deriva-
tive. One advantage of Rprop is that it does not
require any free parameter values (for example,
learning rate).

Adadelta (Zeiler, 2012) also maintains differ-
ent learning rates for every parameter. It changes
the learning rates in such way that parameters as-
sociated with infrequent features are updated with
a larger learning rate while frequently updated pa-
rameters have lower learning rates. It achieves this
by referring to a decaying average of past squared
gradients. Similarly, Adaptive Moment Estima-
tion (Adam) (Kingma and Ba, 2014) computes
the adaptive learning rates in a different way. It not
only relies on the past squared gradients to com-
pute the learning rates, but it will also refer to the
decaying averages of past gradients.

In section-3, three optimization algorithms are
applied to SVI for GPs, and I will use them to
compare different optimization routines.

2.3 GPy and climin

Two python libraries are used in this report:
for the implementation of the GP model, I use
GPy, which is a GP framework developed by the

Figure 1: The result of Titsias’ variational approach
on the toy example. With 20 inducing points, the GP
model can capture the trend of original data perfectly.

Sheffield machine learning group, including ba-
sic kernel functions and other building blocks for
training the GP models. In this experiment, the
Stochastic Variational GP (SVGP) class is used
as the wrapper for the model. Noticeably, the natu-
ral gradients are not implemented within this class,
and therefore, the parameters of the inducing vari-
ables,m, and S, will also be optimized as the other
two sets of variables using their gradients. As a re-
sult, it takes more iterations for q(u) to converge
in our experiment than the original paper.

For the optimization algorithms, climin library
is used, which provides multiple off-the-shelf op-
timization algorithms and is consistent with the
GPy library. I use Rprop, Adadelta, and Adam
classes from climin in the experiment.

3 Compare Optimization Routines

In this section, I create a toy example and com-
pare different optimization routines in two situa-
tions. The inducing points locations are fixed, and
I only need to optimize parameters for covariance
function and inducing variables in the first case;
secondly, inducing point locations are unfixed and
optimized together with the other two sets of pa-
rameters.

3.1 Toy Examples and Sparse GP Model

The toy example consists of 5000 data points
(xi, yi) with yi = sin(6 ∗ xi) + ε. To fit the data,
I use an exponentiated quadratic covariance func-
tion and a white variance as the kernel function.
Then, I randomly initialize 20 inducing points
and use the Titsias’ variational approach (Titsias,
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Figure 2: The GP model initialized with 20 induc-
ing points before optimization. The model fits the data
poorly.

2009) to compute the sparse GP model.
As figure-1 shows, with only 20 inducing

points, the model can fit the data very Ill. The
full GP model has a log-likelihood of 4337, while
the sparse GP model has a likelihood of 4308.
The small difference indicates a tight bound on the
marginal likelihood. The sparse GP model will be
used as a standard to be compared to in the follow-
ing subsections.

3.2 Optimize with fixed inducing point
locations

The first experiment compares two optimiza-
tion routines with fixed inducing point loca-
tions. The inducing point locations are sampled
from a uniform distribution within the range of
(xmin, xmax), and the locations of these induc-
ing points are fixed throughout the optimization
process. Figure-2 shows the GP model initialized
with 20 inducing points. The model is consistent
with the data at the location of the inducing points
but fits poorly at other locations.

Two optimization routines (which are defined as
the following) are used to optimize the inducing
variables m, S, and the kernel parameters θ.

Routine 1 m, S, and θ are updated simultaneously
throughout the optimization process for 3000
iterations.

Routine 2 Only m and S are updated with fixed θ in
the first 500 iterations while m, S, and θ are
updated simultaneously after 500 iterations.

I first test two routines with Adadelta optimizer,
and the result is shown in figure-3, where the

Figure 3: Use Adadelta optimizer to optimize m, S,
and θ with two routines. Two figures show the change
of marginal likelihood and root mean square error
through the optimization process.

marginal likelihood and root mean square error
(RMSE) is plotted. Both RMSE and marginal like-
lihood criteria indicate that the initial model con-
verges to the sparse GP model. The lag of Routine
2 (the yellow line) in the first 500 iterations is be-
cause the parameters θ of the kernel function are
fixed at the beginning of the iteration. However,
the final RMSE and likelihood remain identical,
and this shows that fixing the parameters for the
kernel function does not improve the performance
for Adadelta algorithm.

Secondly, I test two rountines with Adam and
Rprop optimizer. Adam gives the same result as
the Adadelta optimizer: routine 2 does not out-
perform routine 1. On the contrary, for Rprop op-
timizer, rounte 2 does result in a higher likelihood
and lower RMSE. Figure-4 shows the resulting GP
models generated by rountine 1 and rountine 2.
The model optimized with routine 1 fits the data
poorly while the GP model optimized with routine
2 does imitate the sparse GP in Figure-1.

In conclusion, when the inducing point loca-
tions are fixed, routine 2 is superior to routine
1 for some optimization algorithms (for exam-
ple, Rprop); however, for other optimization al-
gorithms that can maintain an adaptive learning
rate, the difference is not significant. For example,
Adam and Adadelta are able to adjust the learning
rate by referring to the past gradient of parameters,
and therefore they have the same performance un-
der routine 1 and routine 2.
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Figure 4: Rprop optimizer generates two completely
different models with routine 1 and routine 2. The GP
model from routine 1 fits the data poorly.

3.3 Optimize with unfixed inducing points
location

In this subsection, I explore optimization routines
with unfixed inducing point locations. In other
words, the model will need to update inducing
point locations Z = {z1, z2, . . . , z10}, inducing
variable parameters m, S, and the kernel parame-
ters θ at the same time. Routine 1* and routine
2* are applied to update these parameters.

Routine 1* m, S, θ, and Z are updated simultaneously
throughout the optimization process for 3000
iterations.

Routine 2* Only m, S, and Z are updated with fixed θ in
the first 500 iterations while all the parame-
ters are updated simultaneously after 500 it-
erations.

Essentially, Routine 1* and routine 2* the
same as routine 1 and routine 2, and the only dif-
ference is that Z is optimized together with m and
S. However, routine 2* does perform better than
routine 1* for all three of the optimizers. Figure-
5 shows the marginal likelihood of three of the
optimizer with routine 1* and routine 2*, indicat-
ing that routine 2* is superior than routine 1* for
Rprop, Adadelta, and Adam.

With the result from two experiments, we can
empirically conclude that fixing the parameters of
kernel function can help with the optimization, es-
pecially with unfixed inducing points. The intu-
ition for why fixing θ helps is that θ defines the
GP model, and before it is optimized, the induc-
ing point Z and variational distribution q(u) =
N (u|m,S) should have the correct value; other-
wise, the optimization applied to θ is effortless.

Figure 5: The marginal likelihood of the GP models
using three algorithms and two routines. Routine 2*
performs better than routine 1*, because the resulting
likelihood of routine 2* is larger than routine 1* for all
of the optimizer.

Figure 6: The inverse lengthscale of five features.
MRT and latitude (location) are the determinate factors
to decide the price of the house. The red bar is com-
puted using sparse GP, which is almost the same as the
parameters of the Full GP model.

When it comes to the performance of three opti-
mization algorithms, as figure-5 shows, Adadelta
turns out to be the best optimizer for solving the
SVI for GPs. It has a much higher marginal likeli-
hood than Adam and Rprop. In the next section,
we will test the conclusion we get from the toy ex-
ample on the real data set.

4 Working with the Real Data

The historical real estate data (Yeh and Hsu, 2018)
in the Taiwan region is used in this report. The
model will predict the house price according to
five features: the house age, the distance to the
nearest Metro Rail Transit System (MRT), the
number of convenience stores in the living circle,
the latitude, and the longitude. The kernel func-
tion is created by the multiplication of five RBF
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Figure 7: Adadelta is used to optimize the GP model
with routine 1* and routine 2* separately. Routine 2*
is superior because it helps the likelihood to converge
faster than routine 1*.

kernels.
I first standardize every feature and then apply

full GP and sparse GP to the problem. Figure-
6 shows the inverse lengthscale of five features,
where the red bar is computed by sparse GP while
the blue bar is computed by full GP. The result
is consistent with the common knowledge: the
price of houses is mainly determined by the lo-
cation of the house and the distance to the closest
transportation station. Another observation is that
sparse GP with 30 inducing points can approxi-
mate the full GP very well. Noticeably, there are
only 414 data points in the training set, and 30 is
not very much smaller than 414. The reason why
we need relatively more inducing points is that the
dimensions of the data are high, and we will ex-
pect more inducing points with the increase of di-
mensions of the data.

Now we will test the following hypotheses,
which are obtained from the section-3.

Hypothesis 1 Routine 1* is superior to Routine 2* in solv-
ing SVI for GP.

Hypothesis 2 Adadelta optimization algorithm is superior
than Adam and Rprop in solving SVI for GP.

To verify hypothesis 1, Adadelta is used to op-
timize SVI for GP with routine 1* and routine 2*
separately. The batch size and the number of in-
ducing points are both set to 30. The algorithm
runs for 300 iterations in both routines, but for rou-
tine 2*, the kernel parameters θ are fixed for the
first 50 iterations. The likelihood change is shown
in Figure-7. It indicates that routine 2* is better
than routine 1* because it helps the likelihood to
converge faster: routine 2* converges around 50
iterations ahead of routine 1*.

Figure 8: Two SVI GP models optimized with routine
1* and routine 2* are compared with the best approxi-
mate GP (sparse GP). With routine 2*, the length scale
of two key features (latitude and MRT) are closer to
sparse GP model than routine 2.

Figure 9: Three optimizers are applied to optimize SVI
for GP. Adadelta has the best performance in terms of
the marginal likelihood.

In addtion, the resulting values of kernel pa-
rameters reinforce hypothesis 1. As figure-8 indi-
cates, the inverse lengthscale from the GP model
with routine 2* is closer to the corresponding
value in sparse GP than routine 1*. ,

To verify hypothesis 2, I run three optimization
algorithms against each other with routine 2*. The
result is shown in figure-9: Adadelta indeed has
the best performance in terms of the marginal like-
lihood, which is consistent with the result from the
toy example. Adam converges faster than the other
two optimizers in the first 50 iterations, but it has
the lowest performance. Rprop has a middle-level
performance and outperformed Adam. The exper-
iment suggests that hypothesis 2 still holds in this
data set.

Overall, the experiment with the real data set
verifies two observations from the toy example,
and in the next section, we will discuss the result
in more detail.
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5 Discussion and Related Work

In this report, I conduct multiple experiments to
explore the effectiveness of different optimization
routines and algorithms in solving SVI for GP.
Following the empirical evidence, Adedelta with
routine 2* is the most effective approach. Al-
though we only focus on GP regression in the
above experiments, it turns out that the structure of
the optimization problem also applies to other sit-
uations, where probabilistic distribution needs to
be approximated. For example, (Hensman et al.,
2015) uses Gaussian approximation to fit a given
posterior, which involves the optimizing for induc-
ing variable q(u) = N (u|m,S), inducing points
location Z, and the kernel parameters. In their
work, they also use Adedelta as the optimizer,
but the suggested optimization routine is different
from routine 2*, in which they fix the inducing
point locations for a few iterations and then op-
timize all the parameters simultaneously. We try
this routine in the regression example, but the re-
sult is worse than both routine 1* and routine 2*.

In terms of future work, several aspects could
be improved. In the experiment, the SVI class
in GPy does not implement the natural gradient.
With the natural gradient descent, we expect to
see faster convergence; furthermore, natural gra-
dient descent will automatically enforce the posi-
tive definite property of covariance matrix of q(u),
and the removal of constraint can help with the
optimization process. Secondly, this reports an-
alyze problem from an empirical perspective. To
validate the hypotheses, mathematical proofs are
needed. For example, Adadelta is widely used in
Gaussian approximation, but it remained a ques-
tion of why Adadelta is superior to other optimiz-
ers with adaptive learning rate. Understanding the
underlying reasons for the superiority of Adadelta
can help with designing better optimization algo-
rithms for Gaussian approximation.
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