
Smoother robot control with the variants of A* planning algorithm

Zehui Li zl432@cantab.ac.uk

I. INTRODUCTION
Mobile robot control consists of two steps: firstly, the

planning algorithm generates a trajectory from the starting
point to the destination while avoiding obstacles along the
way; secondly, a path following algorithm (control algo-
rithm) enables the robot to follow the generated path. In
this report, we explore both planning and control sides of
the mobile robot control system, aiming to provide smoother
robot control.

On the planning side, variants of A* algorithms are
evaluated in order to create more predictable paths with
a lower cost than sampling algorithms and potential field
methods. A* is one of the most used combinatorial planning
algorithms, in this report, we increase the performance of
basic A* algorithm by applying various techniques, includ-
ing beam search, dynamic weighting, and bidirectional
search.

For the controlling algorithm, I use pure pursuit: PD
control algorithm. Furthermore, I try to model the robot as a
plant and build the controller in the frequency domain. The
performance of controllers is compared against each other
using proper metrics, such as rise time, settling time, and
steady state error. The code for this project can be accessed
through github1 .

II. BACKGROUND

In this section, we will review planning algorithms and
controlling algorithms, followed by a description of the
framework we used for simulation and the scope of our
research.

A. Planning Algorithms

In general, planning algorithms fall into three categories:
sampling, potential field, and combinatorial algorithms. Sam-
pling algorithms create paths by exploring the map in a
probabilistic manner, in which only a part of the map is
explored; as a result, the created path is not optimal. Example
of sampling algorithms are rapidly-exploring random trees
[1] (rrt) and rrt* [2]; both of them have the advantage of fast
exploration, but the optimality is not guaranteed. Potential
field method can efficiently generate paths to the destination
for any given starting position, while the generated path may
lead the robot to a locally optimal point.

By contrast, combinatorial algorithms can overcome the
sub-optimality problem of sampling methods. This report
will study one type of combinatorial algorithms - A* al-
gorithm, which guarantees the optimality of generated path

1The instruction on how to use the code is given in the appendix VI. The
link for accessing the code is https://github.com/Zehui127/MobileRobot.

with the disadvantage of extra memory cost and higher
time complexity. Mobile robot often requires real-time path
planning; therefore, A* algorithm needs to be optimized in
order to be used. In this report, I apply multiple optimization
techniques, such as beam search, dynamic weighting, and
bidirectional search, to improve the time complexity of A*
algorithm. The performance of optimized A* algorithms is
then evaluated in the simulated environment. Simulation is
conducted using Python, and the visualization tool is created
based on the framework provided in the second assignment.

B. Path-following Algorithms

With the generated path from the planning algorithm, a
controlling algorithm will enforce the robot to move along
the trajectory. Common path-following algorithms include
pure pursuit: PD control and geometric method. Pure
pursuit: PD control adjusts the pose of the robot according
to the error between the current position of the robot and the
reference position. At the same time, the geometric method
computes the required instantaneous curvature for the robot
to fit the given trajectory.

In this project, PD control is implemented. Furthermore,
in order to build a controller in the frequency domain, we
simplify the robot as a plant with a simple transfer function,
which is then used for creating a controller with the Matlab
control system toolbox.

III. IMPLEMENTATION OF EFFICIENT A* PATH
PLANNING

In this section, the implementation details of A* algo-
rithms are provided. In particular, three optimization tech-
niques (dynamic weighting, bidirectional search, and beam
search) are detailed. The evaluation of Vanilla A* and
improved variants of A* will be presented in the next section.

A. Vanilla A*

As algorithm-1 shows, Vanilla A* first builds an open list,
starting from the initial node, and then it pops the candidate
node with the lowest cost according to some heuristics one
by one until the destination has been reached. The most
important bottleneck is the pop operation and the operation
of checking the existence of a node in the open list. If a
dictionary is used for the open list, the checking-existence
operation will have a constant time complexity, but the pop
operation will take the O(n) time. Alternatively, if a heap is
used for the open list, the pop operation will have O(log(n))
time complexity while the complexity checking-existence
operation will be linear.



To improve the efficiency of vanilla A*, I implement
a specialized data structure used for the open list, which
combine the advantage of heap and dictionary, resulting
in a constant time complexity in the checking-existence
operation and O(log(n)) complexity in the pop operation.
In the following part of this section, we will further improve
the vanilla A* by reducing the number of neighbours that
A* requires to explore before the termination.

Algorithm 1: Vanilla A* Algorithm

1 Input: start position pstart, destination pdest, map m
2 listopen = [];
3 listclose = [];
4 add pstart to listopen;
5 while listopen not empty do
6 pcurrent = listopen.pop();
7 add pcurrent to listclose;
8 listnodes = neighbours(nodecurrent);
9 for i← 0 to 7 do

10 pnei = listnodes(i);
11 if pnei = pdest then
12 return pstart, pnei;
13 end
14 if pnei ∈ listclose then
15 continue;
16 end

/* Dist() is the heuristics
used for the cost */

17 g = cost(pcurrent) +Dist(pcurrent, pnei);
18 h = Dist(pnei, pdest);
19 pnei.cost() = g + h;
20 if pnei /∈ listopen then
21 add pnei to listopen;
22 else
23 if pnei.cost() < listopen.cost(pnei) then
24 update(pnei, listopen);
25 end
26 end
27 end
28 end

B. Dynamic Weighting

Dynamic weighting [3] is a simple strategy to reduce
the size of searching space by modifying the cost function.
Instead of having a cost function as in the equation-1, a
weight term is added to h, resulting in a new formulation
for the cost function in equation-2.

cost = g + h (1)

cost = g + w ∗ h (2)

where w is the weight and w >= 1. w is set to a relatively
large value at the beginning of the iteration, and then w
decays through the process of exploration, where the decay
function is defined in equation-3.

wt = 1 + σ − σ ∗ dt/N (3)

where dt is the current depth of the search and N is the upper
bound of the search depth. σ is a hyper-parameter controlling
the value of w.

Dynamic weighting can efficiently reduce the number of
points needed to be explored. The intuition of dynamic
weighting for A* is that at the beginning of exploration, the
cost for each position is dominated by the heuristic term (the
distance between the current position and the destination)
while at the later stage the cost return to the normal cost
function. In this manner, nodes with a higher probability to
lead to the destination is prioritized at the beginning of the
search.

C. Bidirectional Search

When the goal is given in a search problem, Bidirectional
search (BS) can be used to improve the searching speed. In
the path planning setting, the goal is often given in advance,
and therefore, BS can be naturally applied. To use A* with
BS, two A* searching run in parallel; one searches from
the start position to the destination while the other starts
from the destination and move towards the starting point.
When one A* algorithm pops a position poverlap which have
already appeared in the close list of the other, the algorithm
terminates. Finally, we can reconstruct the solution from
poverlap.

By using the BS technique, the size of the searching tree
can be reduced significantly. In [4], the theoretical boundary
of the bidirectional search is analyzed. The reason why
bidirectional is effective is that the A* search will generate
a searching tree until the goal position is reached. By
conducting the BS technique, the large searching tree is broke
down into two smaller searching trees. The total number of
nodes decreases. In the best case, the time complexity of the
algorithm can be reduced from O(bn) to O(bn/2), where b
is the branching factor, and n is the depth of search.

When it comes to the implementation, we can conveniently
create two separate open lists and close lists, updating two
sets of variables simultaneously within each iteration to
simulate the parallel behaviour.

D. Beam Search

Beam search is also a generalized technique used by many
searching algorithms. When beam search is applied to A*,
it improves the efficiency of A* by restricting the size of
the open list. To be more specific, beam search only keeps k
elements with the smallest cost in the open list, and all the
other nodes with the higher cost is abandoned. By doing so,
the algorithm will always expand nodes which are close to
the target position.

To implement beam search, I use a sorted list as the
internal data structure for the open list. The insertion time
complexity can be reduced to O(log(k)) with the bisect
method; updating operation has a time complexity of O(k)
while the pop operation still has a constant time complexity.

One disadvantage of beam search in A* is that it may lead
to local optimality if k is too small. Therefore, the value of
k needs to be tuned to maintain the optimality of A*.



IV. PATH-FOLLOWING ALGORITHMS

This section describes the PD-control path-following al-
gorithm and the process of building a controller in the
frequency domain.

A. Pure Pursuit: PD control

Fig. 1. The errors between the robot and the given trajectory comes from
three aspects. (Xt, Yt) is the reference location while (XB , YB) is the
position of the robot. δs, δn, and δθ are the along-track, cross-track, and
rotational errors.

Figure-1 shows the setting of Path-following problem. At
time t, the error between the robot and the generated path
can be measured by three errors. The error along the moving
direction is called along-track δs; the error orthogonal to the
movement direction is called δn while the difference between
the moving direction is called rotational error δθ.

PD controller simply use these three types of errors to
correct the movement of the robot. A gain matrix G is first
defined in equation-4.

G =

[
gs 0 0
0 gn gθ

]
(4)

Then final forward velocity u and the rotational velocity ω
can be defined as equation-5.[

u
ω

]
=

[√
ẋt

2 + ẏt
2

θ̇t

]
+G

δsδn
δθ

 (5)

This controller is a PD controller because δθ is related to
the derivative of δn and δs.

B. Build Controller in the Frequency Domain

To model the path following controller in the frequency
domain is very challenging because the system is not a
linear time-invariant (LTI) system. Instead of working with
equation-5, I model the robot’s behaviour in the simulation
environment under the framework of assignment 2. As figure-
2 and figure-3 shows, the position of the robot B is decided
by the holonomic point P . The controller takes the error E as
the input, and then it outputs the holonomic point’s velocity
Vp; following that the plant will output the position of the
robot.

The open loop transfer function is given in equation-6.

Vp(t) = m
d2B(t)

dt2
+ c

dB(t)

dt
+ kB(t) (6)

Fig. 2. The position of a differential drive is linked to a holonomic point
P.

Fig. 3. The simplifies control loop of the robot.The plant simply outputs
the position of the robot according to the given velocity of the holonomic
point.

With the Laplace transform, the open loop transfer function
can be rewritten as equation-7

B(t)

Vp(t)
=

1

ms2 + cs+ k
(7)

With a PD controller the closed-loop transfer function fol-
lows equation-8.

B(t)

E(t)
=

kds+ kp
ms2 + cs+ k

(8)

where kd and kp are the parameters for the PD controller.
Similarly, the close-loop transfer function with the phase-

lead controller follows equation-9.

B(t)

E(t)
=

s− z0
(s− p0)(ms2 + cs+ k)

(9)

where z0 is less than p0.

V. EVALUATION

This section presents the evaluation results of path-
planning and path-following algorithms separately with dif-
ferent metrics.

A. Evaluation of Improved A* Path Planning

Four algorithms: Vanilla A*, A* with dynamic weighting
(DW), A* with bidirectional search (BS), and A* with
beam search (BeS) are evaluated against each other.

To evaluate path-planning algorithms, a map with multiple
obstacles is created, where the starting position is located
at (−1.5,−1.5) and the final position is at (1.5, 1.5) as
figure-4 shows. A* algorithm discretizes the map into grids
and expands the searching tree in eight directions. In the
experiment, the size of the grid is set to 0.2×0.2; the smaller
size of the grid will result in a smoother path.

The evaluation result is shown in table-I. Two metrics
used for the evaluation are the running time t of the



Fig. 4. The raw map where A* algorithms are tested. (−1.5,−1.5) is the
starting position while (1.5, 1.5) is the goal position.

Fig. 5. The searching tree of vanilla A*.

algorithm and the number of expanded nodes n. For the
time metric, beam search achieves the best performance
with a running time of 0.95 seconds while the running time
of vanilla A* is 1.64 seconds. By contrast, when using the
number of nodes as the metric, Bidirectional search has the
best performance, outperforming vanilla A* by more than 50
percent. To understand the behaviour of these algorithms, I
also study the output of four algorithms qualitatively.

TABLE I
PERFORMANCES OF VARIANTS OF A*

A* DW BeS BS
Time 1.64 1.27 0.95 1.30

Num of Nodes 1160 957 683 507

Figure-5 shows the output of vanilla A* algorithm, while
Figure-6 and 7 show the output of beam search and bidi-
rectional search. The grey dots are expanded nodes, and
the black line represents the generated path. In comparison
to vanilla A*, there are less expanded nodes (grey dots) in
the searching tree of BS and BeS.

However, We could see that beam search and bidirectional
search improve over vanilla A* in different ways. In bidirec-
tional search, the middle part of the search tree is relatively
narrow. This is because the bidirectional search grows two
search trees and two trees meet in the middle point. As
a result of early termination, two searching trees do not
need to expand too much in the middle. When it comes
to beam search, the searching tree is uniformly narrower
than vanilla A*. This is because beam search enforces the

algorithm to expand the nodes which are closer to the
destination according to the heuristic. Also, the search tree of
the dynamic weighting algorithm is similar to beam search.

Fig. 6. The searching tree of beam search.

Fig. 7. The searching tree of bidirectional search.

With these observations, we can conclude that three algo-
rithms improve vanilla A* from different perspectives. No-
ticeably, three algorithms are independent techniques which
can be combined. Furthermore, the result of A* which com-
bines three algorithms are shown in figure-8. This combined
algorithm has a running time of 0.86 and 348 expanded
nodes. In addition, figure-8 use a grid with a smaller size,
which shows how reducing the size of the grid can help with
generating a smoother path.

Fig. 8. The searching tree of A* combining three algorithms.

B. Evaluation of the Path-following Algorithms

The evaluation of path-following algorithms is mainly
based on three metrics: rise time, settling time, and steady-
state error.



• Rise Time: time it takes for the response to rise from
10% to 90% of the steady-state response.

• Settling Time: time it takes for the error to fall within
2% of final steady-state value.

• Steady-state error: the error of the system when it goes
to the steady state.

I first use the simulated data from the Gazebo simulator as
the shown in figure-9 to estimate the parameters of the open-
loop transfer functions (equation-7, and then we can model
the plant and tune the parameters of controllers in Matlab.

Fig. 9. The simulation of robot with A* path planning algorithm.

With the closed-loop transfer functions defined in section-
IV-B, the smoothed change of error along the time without
controllers is shown in figure-10. The rise time and settling
time of the system are 21.75 and 38.83 seconds, respectively.
Also, the steady-state error goes to a fixed positive value
instead of zero.

Fig. 10. The change of error along the time without a controller.

PD controller and phase-lead compensator are used to
improve the performance of the system. Figure-11 shows
the smoothed error plot with PD controller. PD controller
effectively reduces the rise time and settling time to 1.5
seconds and 3.73 seconds. Furthermore, the steady-state error
is reduced to less than 0.2. This proves that the PD controller
is an effective path-following algorithm.

By contrast, the performance of phase-lead compensator
is not as good as PD controller. As figure-12 indicates, the

Fig. 11. The change of error along the time with PD controller.

rise time and settling time of the system are 2.17 and 3.75
seconds with a steady-state error of 0.5.

Fig. 12. The change of error along the time with phase-lead compensator.

VI. DISCUSSION AND FURTHER WORK

In this project, efficient path planning algorithms are im-
plemented by improving upon the vanilla A* algorithm. The
evaluation shows that dynamic weighting, beam search, and
bidirectional search can boost the performance of A*. This
result provides insights into solving the problem of real-time
path planning: Beam search and bidirectional search can also
be applied to other search-based path-planning algorithms
such as rrt and D* search [5]; dynamic weighting can be
applied to heuristic path-planning algorithms like rrt*[2]. In
addition to three algorithms covered in this report, there are
also other techniques which can be used to improve vanilla
A*. For example, jump point search (JPS) by [6] can be used
in the uniform-cost map, and it can improve the performance
of the system by a magnitude of 10. However, the generality
of the algorithm is not as good as three techniques used in
this project, because JPS requires movement of the object to
be symmetric.

Another issue which has not been addressed in this project
is the smoothness of the generated path. When discretizing
the map, the size of grids will influence the smoothness
of the generated path. However, the small size of the grid
will be infeasible due to the limit of computational power.
As figure-9 shows, the generated path is not as smooth as



potential field method. One solution is to add a filter upon
the generated path from A*, and this filter can smooth the
path using geometric methods.

APPENDIX

The python code for implementing variants of A* algo-
rithms can be downloaded from the GitHub link. To run
the code, simply change the current working directory to
MobileRobot and run the algorithm with, for example,
python BeamSearch.py. No external package is required.
The parameters, such as grid size can be changed before
running.

REFERENCES

[1] LaValle, Steven M. ”Rapidly-exploring random trees: A new tool for
path planning.” (1998).

[2] Khatib, Oussama. ”Real-time obstacle avoidance for manipulators and
mobile robots.” Autonomous robot vehicles. Springer, New York, NY,
1986. 396-404.

[3] Pohl, Ira. ”Heuristic search viewed as path finding in a graph.”
Artificial intelligence 1.3-4 (1970): 193-204.

[4] Kaindl, Hermann, and Gerhard Kainz. ”Bidirectional heuristic search
reconsidered.” Journal of Artificial Intelligence Research 7 (1997):
283-317.

[5] Matsubara, Y., Sakurai, Y. Yoshikawa, M. D-Search: an efficient
and exact search algorithm for large distribution sets. Knowl Inf Syst
29, 131–157 (2011). https://doi-org.ezp.lib.cam.ac.uk/10.1007/s10115-
010-0336-6

[6] Harabor, Daniel Damir, and Alban Grastien. ”Improving jump point
search.” Twenty-Fourth International Conference on Automated Plan-
ning and Scheduling. 2014.


